advantageous had the large values of n been arranged conveniently for harmonic interpolation, such as n = 60, 120, 240, 480, 960, etc.

L. A. AROIAN

73[K].—IRWIN GUTTMAN, "Optimum tolerance regions and power when sampling from some non-normal universes," Ann. Math. Statist., v. 30, 1959, p. 926–938.

This paper is concerned with obtaining β -expectation tolerance regions which are minimax and most stringent (see [1] and [2]) for the upper tail of the single exponential population and for the central part of the double exponential distribution. The single exponential probability density function (pdf) is of the form $\sigma^{-1} \exp \left[-(x-\mu)/\sigma\right]$ with $x \geq \mu$, where one or both of μ and σ are unknown. The double exponential pdf is of the form $(2\sigma)^{-1} \exp \left(-|x-\mu|/\sigma\right)$, where μ is known and σ is unknown. The sample values are $x_1 < \cdots < x_n$; $\bar{x} = \sum_{i=1}^{n} x_i/n$; $s = \sum_{i=2}^{n} (x_i - x_1)/(n - 1)$; μ_0 and σ_0 represent known values of μ and σ ; $t = \sum_{i=1}^{n} |x_i - \mu_0|$. Then the optimum tolerance intervals, which are easily identified with the situations considered, are $[a_\beta(\bar{x} - \mu_0), \infty), [x_1 - b_\beta\sigma_0, \infty), [x_1 - c_\beta s, \infty)$, and $[\mu_0 - d_\beta t, \mu_0 + d_\beta t]$. Tables I-IV contain 6D values of a_β , b_β , c_β , d_β , respectively, for n = 1(1)20, 40, 60 and $\beta = .75$, .90, .95, .99. The power of tolerance intervals is expressed in terms of parameter α_1 , where α_1 is determined as the solution of $(\alpha\sigma)^{-1}\int_{I(\beta)} \exp\left[-(x-\mu)/\alpha\sigma dx = \gamma\right]$ measure of desirability, for the single exponential case, and from $(2\alpha\sigma)^{-1}\int_{I(\beta)} \exp\left(-|x - \mu| | \alpha\sigma\right) dx = \gamma$ for

the double exponential case. Here $I(\beta)$ is the tolerance interval considered and $0 < \gamma < 1$ (large values indicate greatest desirability). Tables V, VI, and VIII contain 7D values of the power for intervals $[a_{\beta}(\bar{x} - \mu_0), \infty), [x_1 - b_{\beta}\sigma_0, \infty), [\mu_0 - d_{\beta}t, \mu_0 + d_{\beta}t]$, respectively, for $n = 1(2)7, 10, 15, 30, 60, \text{ and } \beta = .75, .90, .95, .99$; likewise for $x_1c_{\beta}s$ and Table VII, except that n = 2(2)10, 15, 30, 60.

J. E. WALSH

1. D. A. S. FRASER & IRWIN GUTTMAN, "Tolerance regions," Ann. Math. Statist., v. 27, 1956, p. 162-179.

74[K].—MILOS JILEK & OTAKAR LIKAR, "Coefficients for the determination of onesided tolerance limits of normal distribution," Ann. Inst. Statist. Math. Tokyo v. 11, 1959, p. 45–48.

It is well known that a random sample of size N from a normal universe with mean μ and variance σ^2 yields one-sided tolerance limits $(-\infty, T_u)$ and $(T_L, +\infty)$ each of which includes at least a fraction α of the universe with probability P, where

$$T_u = \bar{x} + ks,$$
$$T_L = \bar{x} - ks.$$

^{2.} IRWIN GUTTMAN, "On the power of optimum tolerance regions when sampling from normal distributions," Ann. Math Statist., v. 28, 1957, p. 773-778.